Sifat-sifat HimmpunanSifat KomutatifA={1,3,5}A=\{1,3,5\}A={1,3,5}B={2,3,6}B=\{2,3,6\}B={2,3,6}Pada Irisan HimpunanA∩B={3}A\cap B=\{3\}A∩B={3}B∩A={3}B\cap A=\{3\}B∩A={3}∴A∩B=B∩A\therefore A\cap B=B\cap A∴A∩B=B∩APada Gabungan HimpunanA∩B={1,2,3,5,6}A\cap B=\{1,2,3,5,6\}A∩B={1,2,3,5,6}B∩A={1,2,3,5,6}B\cap A=\{1,2,3,5,6\}B∩A={1,2,3,5,6}∴A∪B=B∪A\therefore A\cup B=B\cup A∴A∪B=B∪ASifat AsosiatifA={1,2,3,4,5}A=\{1,2,3,4,5\}A={1,2,3,4,5}B={4,5,6,7,8,9}B=\{4,5,6,7,8,9\}B={4,5,6,7,8,9}C={3,5,9,10,11,12}C=\{3,5,9,10,11,12\}C={3,5,9,10,11,12}Pada Irisan HimpunanA∩B={4,5}A\cap B=\{4,5\}A∩B={4,5}B∩C={5,9}B\cap C=\{5,9\}B∩C={5,9}A∩(B∩C)={5}A\cap (B\cap C)=\{5\}A∩(B∩C)={5}(A∩B)∩C={5}(A\cap B)\cap C=\{5\}(A∩B)∩C={5}∴A∩(B∩C)=(A∩B)∩C\therefore A\cap (B\cap C)=(A\cap B)\cap C∴A∩(B∩C)=(A∩B)∩CPada Gabungan HimpunanA∪B={1,2,3,4,5,6,7,8,9}A\cup B=\{1,2,3,4,5,6,7,8,9\}A∪B={1,2,3,4,5,6,7,8,9}B∪C={3,4,5,6,7,8,9,10,11,12}B\cup C=\{3,4,5,6,7,8,9,10,11,12\}B∪C={3,4,5,6,7,8,9,10,11,12}A∪(B∪C)={1,2,3,4,5,6,7,8,9,10,11,12}A\cup (B\cup C)=\{1,2,3,4,5,6,7,8,9,10,11,12\}A∪(B∪C)={1,2,3,4,5,6,7,8,9,10,11,12}(A∪B)∪C={1,2,3,4,5,6,7,8,9,10,11,12}(A\cup B)\cup C=\{1,2,3,4,5,6,7,8,9,10,11,12\}(A∪B)∪C={1,2,3,4,5,6,7,8,9,10,11,12}∴A∪(B∪C)=(A∪B)∪C\therefore A\cup (B\cup C)=(A\cup B)\cup C∴A∪(B∪C)=(A∪B)∪CSifat DistributifA={1,2,3,4,5}A=\{1,2,3,4,5\}A={1,2,3,4,5}B={4,5,6,7,8,9}B=\{4,5,6,7,8,9\}B={4,5,6,7,8,9}C={3,5,9,10,11,12}C=\{3,5,9,10,11,12\}C={3,5,9,10,11,12}Pada Irisan Himpunan terhadap Gabungan HimpunanA∩B={4,5}A\cap B=\{4,5\}A∩B={4,5}A∩C={3,5}A\cap C=\{3,5\}A∩C={3,5}B∪C={3,4,5,6,7,8,9,10,11,12}B\cup C=\{3,4,5,6,7,8,9,10,11,12\}B∪C={3,4,5,6,7,8,9,10,11,12}A∩(B∪C)={3,4,5}A\cap (B\cup C)=\{3,4,5\}A∩(B∪C)={3,4,5}(A∩B)∪(A∩C)={3,4,5}(A\cap B)\cup (A\cap C)=\{3,4,5\}(A∩B)∪(A∩C)={3,4,5}∴A∩(B∪C)=(A∩B)∪(A∩C)\therefore A\cap (B\cup C)=(A\cap B)\cup (A\cap C)∴A∩(B∪C)=(A∩B)∪(A∩C)Pada Gabungan Himpunan terhadap Irisan HimpunanA∪B={1,2,3,4,5,6,7,8,9}A\cup B=\{1,2,3,4,5,6,7,8,9\}A∪B={1,2,3,4,5,6,7,8,9}A∪C={1,2,3,4,5,9,10,11,12}A\cup C=\{1,2,3,4,5,9,10,11,12\}A∪C={1,2,3,4,5,9,10,11,12}B∩C={5,9}B\cap C=\{5,9\}B∩C={5,9}A∪(B∩C)={1,2,3,4,5,9}A\cup (B\cap C)=\{1,2,3,4,5,9\}A∪(B∩C)={1,2,3,4,5,9}(A∪B)∩(A∪C)={1,2,3,4,5,9}(A\cup B)\cap (A\cup C)=\{1,2,3,4,5,9\}(A∪B)∩(A∪C)={1,2,3,4,5,9}∴A∪(B∩C)=(A∪B)∩(A∪C)\therefore A\cup (B\cap C)=(A\cup B)\cap (A\cup C)∴A∪(B∩C)=(A∪B)∩(A∪C)